Examples: Use default wordlist with 5 threads (-t 5) and hide 404 messages (–e 404) to fuzz the given URL (http://192.168.1.1/FUZZ): python brutality.py -u 'http://192.168.1.1/FUZZ' -t 5 -e 404
Use common_pass.txt wordlist (-f ./wordlist/common_pass.txt), remove response with 6969 length (-r 6969) and proxy at 127.0.0.1:8080 (-p http://127.0.0.1:8080) to fuzz the given URL (http://192.168.1.1/brute.php?username=admin&password=FUZZ&submit=submit#): python brutality.py -u 'http://192.168.1.1/brute.php?username=admin&password=FUZZ&submit=submit#' -f ./wordlist/common_pass.txt -r 6969 -p http://127.0.0.1:8080
En el equipo de Ideas Locas nos encanta hacer proyectos y trabajar con tecnologías de Inteligencia Artificial. Dentro de este tan amplio campo, los servicios cognitivos de NLP (Natural Language Processing) están adquiriendo cada vez mayor importancia. Gracias a ellos podemos empezar a crear interfaces de usuario que humanizan la interacción persona-ordenador, con todas las ventajas que ello supone.
Figura 1: Meta-aprendizaje con GPT-3: Aprender a sumar leyendo o a escribir código fuente con servicios cognitivos de Texto Predictivo.
Figura 2: Creación de novelas con herramientas de Texto Predictivo
El problema del Texto Predictivo es aparentemente sencillo de entender. Se trata de crear un modelo entrenado que debe predecir el siguiente elemento del texto basándose en una secuencia previa de caracteres que llevarán a criterios puramente probabilísticos. Por tanto, dada una entrada como "soy hacke" la salida del modelo debería de ser una "r". A nivel humano esto parece obvio pero la creación y el entrenamiento de estos modelos de IA es realmente complejo, debido a que el lenguaje lo es, aunque no nos demos cuenta como hablantes.
Figura 3: Modelo de texto predictivo entrenado con probabilidades
Para resolver este problema, el último modelo que ha visto la luz ha sido GPT-3 (con permiso de GShard de Google que lleva escasos días público) y ha sido desarrollado por OpenAI, empresa de Elon Musk. Es el pistoletazo de salida de una nueva generación de modelos gigantescos - para que os hagáis una pequeña idea, GPT-3 cuenta con 175.000 millones de parámetros - desarrollados y entrenados por grandes empresas tecnológicas para ser servidos a los usuarios a través de APIs.
Puede resultar algo exagerado para un modelo que únicamente predice la siguiente letra, ¿verdad?. Lo que se ha observado con GPT-3, que ya se empezaba a intuir con su hermano pequeño GPT-2, es que es capaz de desarrollar un meta-aprendizaje, es decir, ha aprendido a aprender. Esto es resultado de haber sido entrenado con prácticamente la totalidad de los textos que hay en la red y es aquí es donde reside la potencia de este modelo.
Comúnmente, un modelo se desarrolla para resolver un problema específico. Sin embargo, GPT-3 ha cambiado radicalmente esta mentalidad, ya que ha sido entrenado para una tarea general y son los usuarios los que han ido encontrando distintos casos de uso en los que el modelo se desenvuelve a la perfección. Vamos a ver algunos ejemplos en diferentes ámbitos.
Generación de texto
La generación de texto es el problema fundamental para el cual el modelo ha sido entrenado, por tanto, su desempeño en esta tarea es espectacular. Es capaz de generar contenido escrito de forma que el lector ni se percate de que el texto ha sido generado por un modelo de IA. Pero mucho ojo con esto, porque puede ser utilizado para generar desinformación y ser usado en Fake News.
GPT-3 is going to change the way you work.
Introducing Quick Response by OthersideAI
Automatically write emails in your personal style by simply writing the key points you want to get across
The days of spending hours a day emailing are over!!!
El modelo es capaz de predecir que después de la secuencia "3 + 3 = " el carácter más probable es el "6". ¿Esto significa que sepa sumar? Realmente no, es únicamente cuestión de probabilidad, pero sí que puede dar respuesta a operaciones matemáticas de esta forma... ¿se podrían hacer cálculos matemáticos seguros?
Escribir código
GPT-3 es capaz de escribir código en distintos lenguajes de programación mediante una descripción en lenguaje natural, consiguiendo incluso el desarrollo de frontales web o de redes neuronales.
AI INCEPTION!
I just used GPT-3 to generate code for a machine learning model, just by describing the dataset and required output.
Estos son únicamente unos ejemplos de lo que GPT-3 es capaz de lograr en los meses que lleva en producción, y puedes ver muchos más ejemplos de aplicación de GPT-3 en este enlace de GPT-3 examples. Nadie sabe aún cuáles son los límites de estos modelos y que nos depararán los próximos que salgan a la luz pero, ¿a que ya no resulta tan exagerado poner las APIs privadas?